$p$-Summable Sequence Spaces with Inner Products

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly $[V_{2}, lambda_{2}, M, p]-$ summable double sequence spaces defined by orlicz function

In this paper we introduce strongly $left[  V_{2},lambda_{2},M,pright]-$summable double vsequence spaces via Orlicz function and examine someproperties of the resulting these spaces. Also we give natural relationshipbetween these spaces and $S_{lambda_{2}}-$statistical convergence.

متن کامل

On almost B-summable double sequence spaces

The concept of a four-dimensional generalized difference matrix and its domain on some double sequence spaces was recently introduced and studied by Tuğ and Başar (AIP Conference Proceedings, vol. 1759, 2016) and Tuğ (J. Inequal. Appl. 2017(1):149, 2017). In this present paper, as a natural continuation of (J. Inequal. Appl. 2017(1):149, 2017), we introduce new almost null and almost convergent...

متن کامل

on strongly δn -summable sequence spaces

in the present paper we define strongly δn -summable sequences which generalize a-summablesequences and prove such spaces to be complete paranormed spaces under certain conditions, sometopological results have also been discussed.

متن کامل

Inner products and Z/p-actions on Poincaré duality spaces

Let Z=p act on an Fp-Poincaré duality space X, where p is an odd prime number. We derive a formula that expresses the Fp-Witt class of the fixed point set X Z=p in terms of the Fp1⁄2Z=p -algebra H ðX ;FpÞ, if H ðX ;Zð pÞÞ does not contain Z=p as a direct summand. This extends previous work of Alexander and Hamrick, where the orientation class of X is supposed to be liftable to an integral class...

متن کامل

Configuration spaces with summable labels

Let M be an n-manifold, and let A be a space with a partial sum behaving as an n-fold loop sum. We define the space C(M ;A) of configurations in M with summable labels in A via operad theory. Some examples are symmetric products, labelled configuration spaces, and spaces of rational curves. We show that C(In, ∂In;A) is an n-fold classifying space of C(In;A), and for n = 1 it is homeomorphic to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bitlis Eren University Journal of Science and Technology

سال: 2015

ISSN: 2146-7706

DOI: 10.17678/beujst.06700